

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Miniature Proportional Valves Precision Fluidics

ENGINEERING YOUR SUCCESS.

When you partner with the global leader in motion and control technologies, expect to move your business and the world forward. From miniature solenoid valves to highly integrated automation systems, our innovations are critical to life-saving medical devices and scienti c instruments used for drug discovery and pathogen detection. Not to mention, critical to decreasing time to market and lowering your overall cost of ownership. So partner with Parker, and get ready to move, well, anything.

Table of Contents

	product		page
	Low Flow Proportiona	l Valves	
S. S. Salar State	VSO®	Miniature Proportional Valve	4
W O WHAT	VS0® Low Flow	Low Flow Miniature Proportional Valve	10
1360	Lone Wolf	Normally Open Miniature Proportional Valve	16
-Parker	MD PRO	Miniature Proportional Valve	22
	High Flow Proportiona	al Valves	
	PACE Hf	Miniature Ultra High Flow, Low Power Proportional Valve	28
	VSO® MAX	Non-Thermally Compensated	32
	HF PRO	High Flow Proportional Valve	38
	Value Added Ap	plication-Specific Solutions	46

VSO[®] Miniature Proportional Valve

Thermally Compensated Proportional Valve

Typical Applications:

- Gas Chromatography
- Mass Spectrometry
- Ventilators
- 0, Concentrators/Conservers
- Anaesthesia Delivery & Monitors
- Pressure & Flow Control
- Mass Flow Control

The VSO®, Voltage Sensitive Orifice, is a miniature solenoid valve that controls the flow of gas in proportion to input current. You can drive the valve with either DC current or pulse width modulation and use closed loop feedback to deliver optimal system performance. Medical and analytical OEMs worldwide choose the VSO® as their preferred miniature proportional valve.

- Operating pressures up to 150 psig and a range of orifice sizes.
- Satisfies a 0.2 sccm leakage specification of He for 100 million life cycles and offers high repeatability.
- Thermally compensated to maintain ideal flow.
- All valves are cleaned for Oxygen and Analytical Service use.
- Serialized performance traceability.
- Uses either DC current or pulse width modulation with closed loop. feedback to deliver optimal system performance.
- RoHS compliant.

Performance Data Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, &

Operating Environment:

32 to 131°F (0 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.785 in (45.34 mm)

Width:

0.625 in (16.51 mm)

Height:

0.67 in (17.02 mm)

Porting:

Barbs or 10-32 female; manifold mount (with screens available)

Weight:

2.2 oz (62.86 grams)

Physical Properties

Internal Volume:

0.031 in³ (0.508 cm³)

Filtration: (Suggested and Available)

Models 1 & 2: 17 micron Models 3, 4, 5, & 6: 40 micron

Flow Direction:

Inlet Port Port 2 **Outlet Port** Port 1

Electrical

Power:

2.0 Watts maximum

Voltage:

See Table 2

Electrical Termination:

18 in Wire Leads, PC Mount. Quick Disconnect Spade

Wetted Materials

Series 11 Body:

360 HO, Brass

Series 25 Body:

Nickel-Plated Brass

Stem Base:

430 FR Stainless Steel and Brass 360 HT

All Others:

FKM; FFKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 0.2 SCCM of He with a differential pressure of 1 psid, 25 psid and 150 psid

External 0.016 SCCM of He at 150 psi

Pressure:

0 to 50 psi (3.45 bar)

0 to 75 psi (5.17 bar)

0 to 100 psi (6.89 bar)

0 to 150 psi (10.34 bar)

See Table 1

Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Sizes:

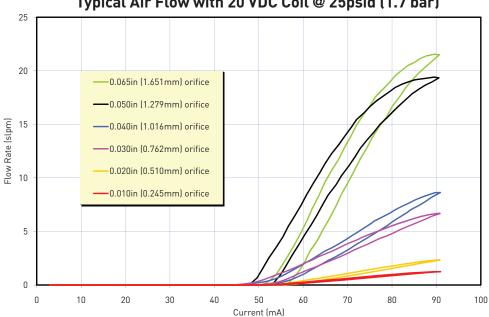
0.010 in (0.245 mm)

0.020 in (0.510 mm)

0.030 in (0.762 mm)

0.04 in (1.016 mm)

0.05 in (1.270 mm)


0.065 in (1.651 mm)

Hysteresis:

7% of full scale current (Typical) 15% of full scale current (Max)

VS0® Pressure vs Flow Curves Model 1-6

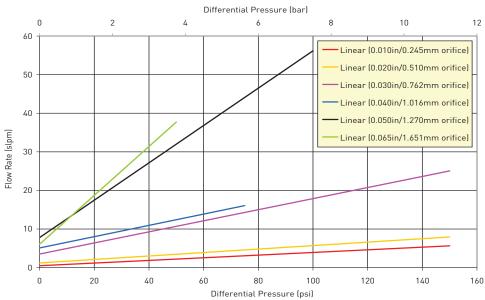


Table 1: Pressure and Flow Capabilities

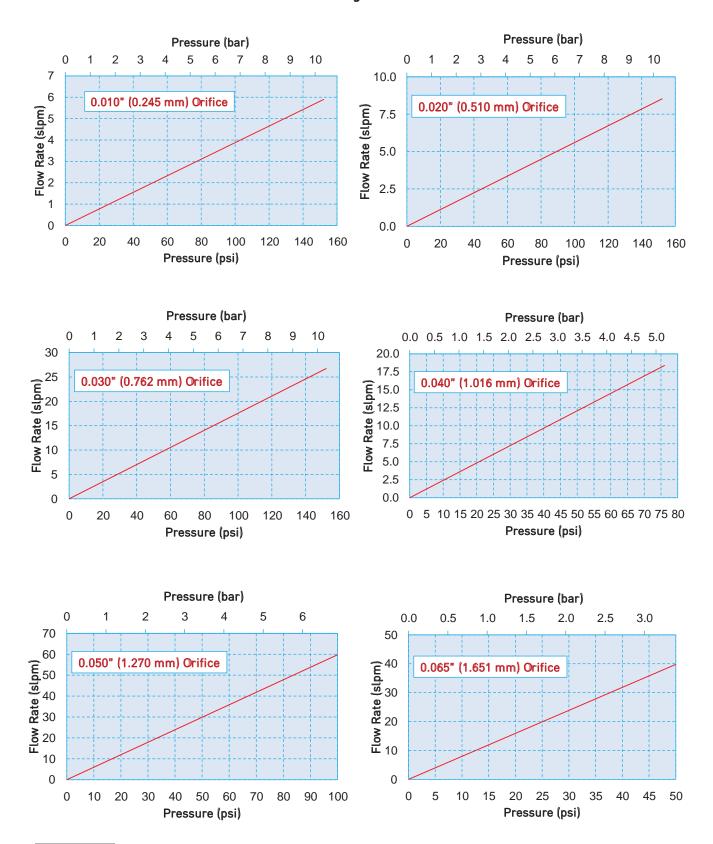

Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential	
0.010in (0.245mm)	150 psig (10.34 bar)	150 psid (10.34 bar)	
0.020in (0.510mm)	150 psig (10.34 bar)	150 psid (10.34 bar)	
0.030in (0.762mm)	150 psig (10.34 bar)	150 psid (10.34 bar)	
0.040in (1.016mm)	150 psig (10.34 bar)	75 psid (5.17 bar)	
0.050in (1.270mm)	150 psig (10.34 bar)	100 psid (6.89 bar)	
0.065in (1.651mm)	150 psig (10.34 bar)	50 psid (3.45 bar)	

Table 2: Electrical Requirements

		•
Minimum	Nominal Coil	
Available	Resistance @	Input Current for
Voltage (VDC)	20°C (Ohms)	Full Flow (mA)
5.5	11	304
8.0	23	212
11.5	47	152
13.5	68	125
20.0	136	91
29.0	274	66
41.0	547	47
56.0	1094	32

VS0® Thermally Compensated Proportional Valve VS0® Sizing Charts

VS0[®] Series 11 Manifold Mount

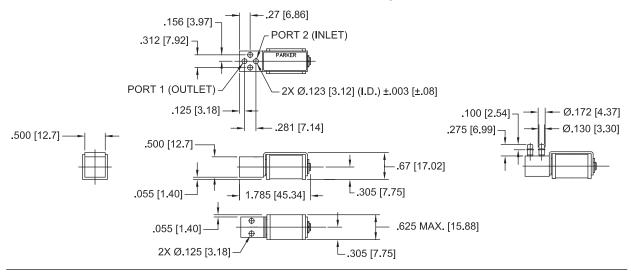
Pneumatic Interface

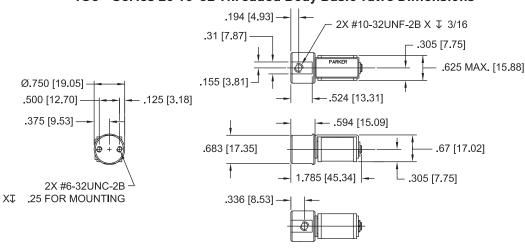
VS0[®] Series 11 Barbed

VS0[®]Series 25 10-32 Threaded

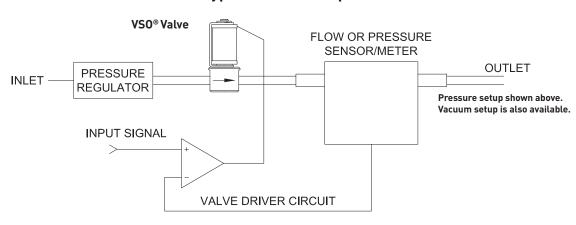
Electrical Interface

18" Wire Lead


4 PC Pin


Quick Connect Spade

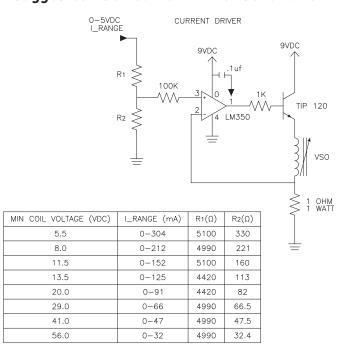
VSO® Series 11 Manifold Mount and Barbed Body Basic Valve Dimensions


${ m VS0}^{ m @}$ Series 25 10-32 Threaded Body Basic Valve Dimensions

VSO® Installation and Use

Typical Valve Set-up

Valve Electrical Control


Basic Control:

The VSO® valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

Suggested VS0® Current Driver Schematic

VSO® Low Flow

Thermally Compensated Proportional Valve

The VSO® LF (Low Flow) offers the same benefits as the VSO® valve with enhanced flow control for applications where control is critical or flow is required between 0 - 500 sccm. This miniature solenoid-operated valve automates the flow of gas in proportion to the input current.

Features

- Lowest flow of any proportional valve on the market.
- Uses either DC current or pulse width modulation; closed loop feedback delivers optimal system performance.
- Offers computer automated calibrations and full calibration traceability.
- Rated for 10 million life cycles.
- Maintains ideal flow through thermal compensation.
- Highly repeatable.
- RoHS compliant.

Typical Applications:

- Gas Chromatography
- Mass Spectrometry
- Pressure & Flow Control
- Mass Flow Control

Performance Data Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, &

Operating Environment:

32 to 122°F (0 to 50°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.785 in (45.34 mm)

Width:

0.625 in (16.51 mm)

Height:

0.67 in (17.02 mm)

Porting:

Manifold mount

Weight:

2.2 oz (62.86 grams)

Physical Properties

Internal Volume:

0.031 in³ (0.508 cm³)

Filtration: (Suggested and Available)

Flow Direction:

Inlet Port Port 2 Outlet Port Port 1

Oxygen and Analytically Clean:

Standard

Electrical

Power:

2.0 Watts maximum

Voltage:

See Table 2

Electrical Termination:

18 in Wire Leads

Wetted Materials

Body: 360 HO2 Brass

Stem Base:

430 FR Stainless Steel and

Brass 360 HT

All Others:

FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 0.2 SCCM of He with a differential pressure of 1 psid, 25 psid and 150 psid

External 0.016 SCCM of He at 150 psi

Pressure:

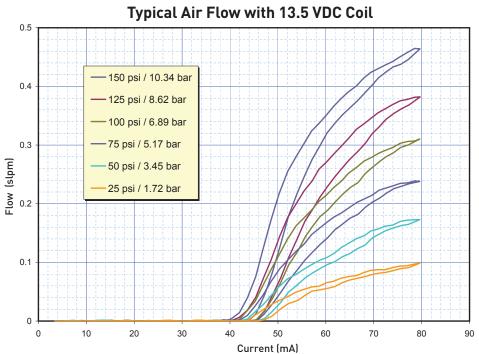
0 to 150 psi (10.34 bar)

See Table 1

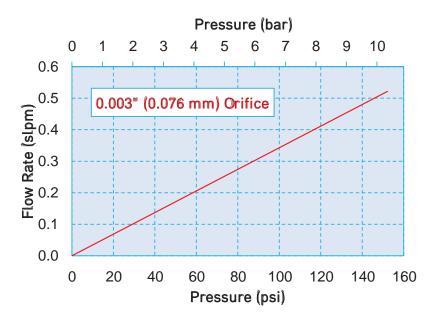
Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Size:


0.003" (0.076 mm)

Hysteresis:


7% of full scale current (Typical) 15% of full scale current (Max)

VSO is a registered trademark of Parker Hannifin Corporation.

VS0® Low Flow Pressure vs Flow Curve

Table 1: Pressure and Flow Capabilities

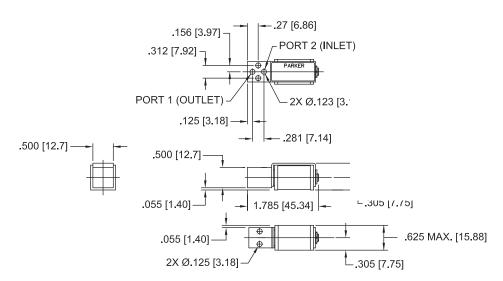
Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential
0.003in (0.076mm)	150 psig (10.34 bar)	150 psid (10.34 bar)

Table 2: Electrical Requirements

	Nominal Coil	
Minimum Available	Resistance @	Input Current for
Voltage (VDC)	20°C (Ohms)	Full Flow (mA)
6.5	47	130
8.0	68	115
12.0	136	80
18.0	274	60
24.0	547	43

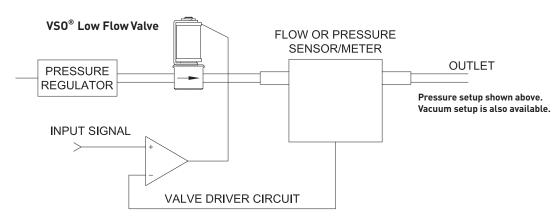
Pneumatic Interface

VS0[®] Low Flow Manifold Mount



Electrical Interface

VS0[®] Low Flow 18" Wire Lead

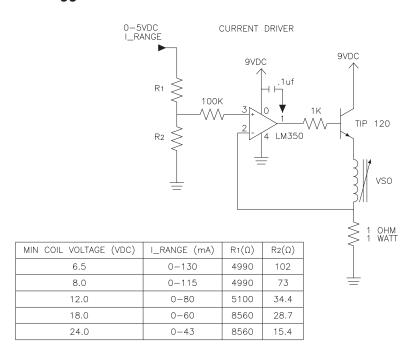


VS0[®] Low Flow Manifold Body Basic Valve Dimensions

VS0® Low Flow Installation and Use

Typical Valve Set-up

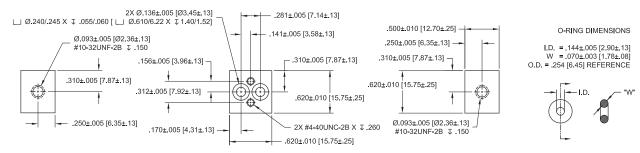
Valve Electrical Control


Basic Control:

The VSO® Low Flow valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.


Suggested VSO® Low Flow Current Driver Schematic

Manifold & O-Ring Dimensions & Design

Not shipped with valves.

Ordering Information

Sample Part ID	910	-	000200	_	001	
Description	Series	-	Model Number	-	Coil Selection	Accessories
			VSO, Low Flow, 0.003" Orifice Size		X: Max Voltage*	Manifold Mount O-Rings: 190-007024-002 (FKM)
					001: 6.5 VDC	Recommended Mounting
Options					002: 8 VDC	Hardware:
	1				003: 12 VDC	Mounting Screw, 4-40 x 5/8" 191-000115-010
					004: 18 VDC	Set Torque: 5.0 in-lb.
ORDER					007: 24 VDC	(6.8 N-m) Recommended Tubing
ONLINE					* Max Voltage for continuous full flow, ambient Temp 55°C,	Internal Diameter: 0.125 in (3.0 mm)

In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range.

NOTE: Please consult Parker Precision Fluidics for other considerations. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002160-002 and Drawing #890-003022-022.

For more information call +1 603 595 1500 or email ppfinfo@parker.com Visit www.parker.com/precisionfluidics

NOTES

Lone Wolf Normally Open Miniature Proportional Valve

Thermally Compensated Proportional Valve

With its patented technology, the Lone Wolf valve has the highest performance characteristics of any Normally Open proportional valve available on the market. The Lone Wolf valve offers silent operation, provides repeatable highspeed performance, and ensures maximum accuracy.

Features

- Achieves rapid, stable performance.
- Enhances system control and patient comfort.
- Maintains ideal flow through Normally Open valve with thermal compensation.
- Extremely reliable.
- RoHS compliant.

Typical Applications:

- Blood Pressure Monitoring
- Vitreo Retinal Surgery

Performance Data **Physical Properties**

Valve Type:

2-Way Normally Open

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment:

32 to 122°F (0 to 50°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.785 in (45.34 mm)

Width:

0.625 in (16.51 mm)

Height:

0.67 in (17.02 mm)

Porting:

Barbs; manifold mount (with screens available)

Weight:

2.2 oz (62.86 grams)

Physical Properties

Internal Volume:

0.031 in³ (0.508 cm³)

Filtration: (Suggested and Available)

40 micron

Flow Direction:

Inlet Port Port 1 Outlet Port Port 2

Electrical

Power:

2.0 Watts maximum

Voltage:

See Table 2

Electrical Termination:

18 in Wire Leads, PC Mount

Wetted Materials

Body:

360 HO, Brass

Stem Base:

430 FR Stainless Steel and Brass 360 HT

All Others:

FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 0.2 SCCM of He with a differential pressure of 1 psid, 25 psid and 150 psid

External 0.016 SCCM of He at 150 psi

Pressure:

0 to 10 psi (0.69 bar)

0 to 20 psi (1.37 bar)

0 to 25 psi (1.72 bar)

See Table 1

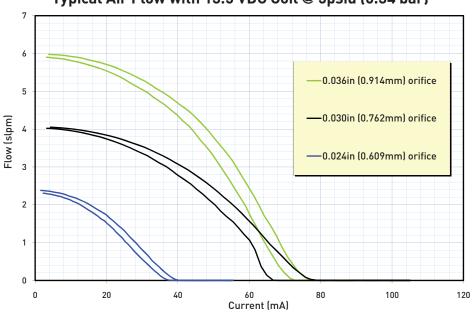
Vacuum:

0-20 in Hg (0-508 mm Hg)

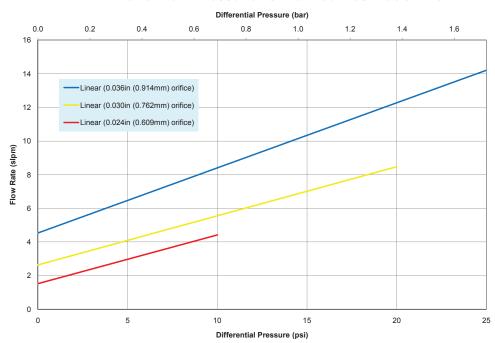
Orifice Sizes:

0.024 in (0.609 mm)

0.030 in (0.762 mm)


0.036 in (0.914 mm)

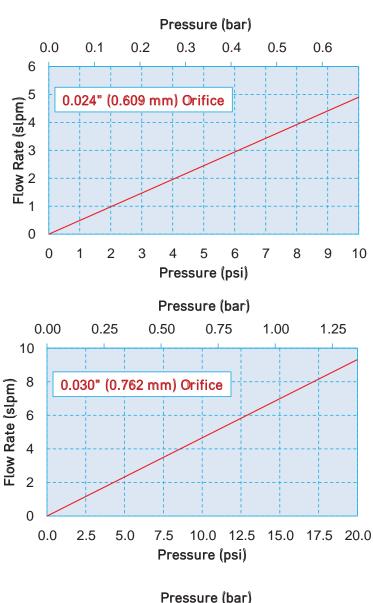
Hysteresis:

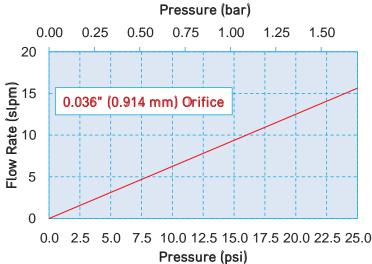

7% of full scale current (Typical) 15% of full scale current (Max)

Typical Air Flow with 13.5 VDC Coil @ 5psid (0.34 bar)

Lone Wolf Pressure vs Flow Curves Model 1-3

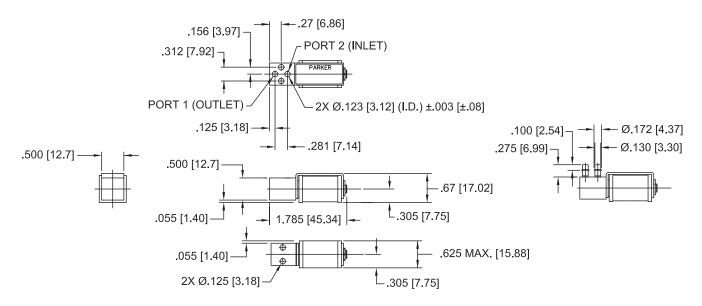
Table 1: Pressure and Flow Capabilities


Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential
0.024in (0.609mm)	0-10 psig (0.69bar)	150 psid (10.34 bar)
0.030in (0.762mm)	0-20 psig (1.37bar)	150 psid (10.34 bar)
0.036in (0.914mm)	0-25 psig (1.72bar)	150 psid (10.34 bar)

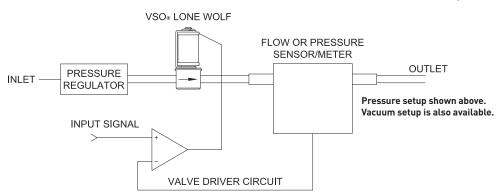

Table 2: Electrical Requirements

	Model 1 (0.024" orifice)		Model 2 (0.	030" oritice)	Model 3 (0.	036" oritice)
	Nominal Coil		Nominal Coil		Nominal Coil	
Minimum Available	Resistance @	Input Current for	Resistance @	Input Current for	Resistance @	Input Current for
Voltage (VDC)	20°C (Ohms)	Full Shut Off (mA)	20 ° C (Ohms)	Full Shut Off (mA)	20°C (Ohms)	Full Shut Off (mA)
5.5	47	92	23	177	11	335
8.0	68	76	47	127	23	233
11.5	136	55	68	105	47	168
13.5	274	40	136	76	68	138
20.0	547	28	274	55	136	100
29.0	1094	20	547	40	274	73

Lone Wolf Thermally Compensated Proportional Valve Lone Wolf Sizing Charts



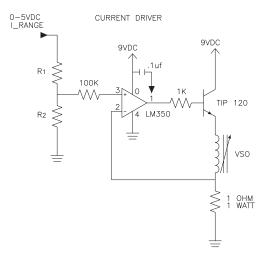
Lone Wolf Manifold Mount Electrical Interface 18" Wire Lead 4 PC Pin


Lone Wolf Manifold Mount and Barbed Body Basic Valve Dimensions

Lone Wolf Installation and Use

Typical Valve Set-up

Valve Electrical Control

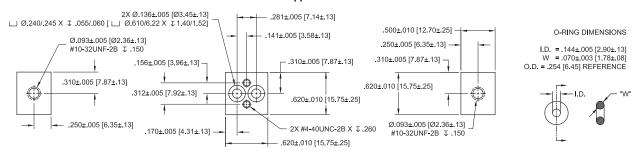

Basic Control:

The Lone Wolf valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.

Suggested Lone Wolf Current Driver Schematic



	Model 1 (0.024" orifice)			Model 2 (0.030" orifice)			Model 3 (0.030" orific	:e)
Min. Coil Voltage									
(VDC)	I_RANGE (mA)	R1 (Ω)	R2 (Ω)	I_RANGE (mA)	R1 (Ω)	R2 (Ω)	I_RANGE (mA)	R1 (Ω)	R2 (Ω)
5.5	0 - 92	5600	95.3	0 - 177	3000	100	0 - 335	1540	100
8.0	0 - 76	9880	95.3	0 - 127	6260	101	0 - 233	3300	98.8
11.5	0 - 55	9880	47.5	0 - 105	4990	45.9	0 - 168	6260	93.1
13.5	0 - 40	9880	29.4	0 - 76	4990	28.4	0 - 138	9650	100
29 N	0 - 20	9880	6.9	n - 4n	9880	13.7	0 - 73	9650	24.3

Manifold & O-Ring Dimensions & Design

Not shipped with valves.

Ordering Information

Sample Part ID	LW	1	В	V	А	F	8
Description	Series	Model Number	Body/Material	Elastomer	Coil Selection	Electrical Interface	Pneumatic Interface
		#: Max Operating Pressure/Orifice Size			X: Max Voltage*		
		1 : 0-10 psi/0.024"	B: Brass	V: FKM	A: 5 VDC	F: Wire Leads, 18"-19"	0: Manifold Mount
		2 : 0-20 psi/0.030"			B: 8 VDC	P: PC Board Mount, 4 PC	1: Manifold Mount with
		3 : 0-25 psi/0.036"			C: 11.5 VDC	Pins	Screens
					D : 13.5 VDC		8: 1/8" Barbs
					F: 29 VDC		Accessories
					*Max Voltage for continuous full flow, ambient temperature 55°C		Mounting Screw, 4-40 x 5/8" 191-000115-010

In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range.

NOTE: Please consult Parker Precision Fluidics for other considerations. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002130-001 and Drawings #890-003079-001 and #890-003079-004.

For more information call +1 603 595 1500 or email ppfinfo@parker.com

Visit www.parker.com/precisionfluidics

MD PRO Miniature Proportional Valve

Non-Thermally Compensated Proportional Valve

The MD PRO is a miniature solenoid-operated valve that controls gas flow proportionaly to input current. This non-thermally compensated MD PRO valve is the solution for pressure and flow control.

Features

- Provides repeatability across its operating range.
- Offers a superior combination of value and performance.
- Rated for 10 million life cycles.
- RoHs compliant.

Typical Applications:

- 0, Concentrators/Conservers
- Ventilators
- Anaesthesia
- Pressure & Flow Control
- Patient Monitors

Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment:

32 to 140°F (0 to 60°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.785 in (45.34 mm)

Width:

0.625 in (16.51 mm)

Height:

0.67 in (17.02 mm)

Porting:

1/8" barbs; manifold mount

Weight:

2.2 oz (62.86 grams)

Internal Volume:

0.031 in³ (.508 cm³)

Filtration (Suggested and Available):

43 micron

Flow Direction:

Inlet Port Port 2 **Outlet Port** Port 1

Electrical

Power:

2.0 Watts maximum

Voltage:

See table 2

Electrical Termination:

18" Wire Leads 33.5 AWG,

PC Mount, Quick Disconnect Spade

Wetted Materials

Body:

360 HO, Brass

Stem Base:

430 FR Stainless Steel and Brass 360 HT

All Others:

FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 0.2 SCCM of air with a differential pressure of 1 psid, 25 psid and 150 psid

External 0.016 SCCM of air at 150 psi

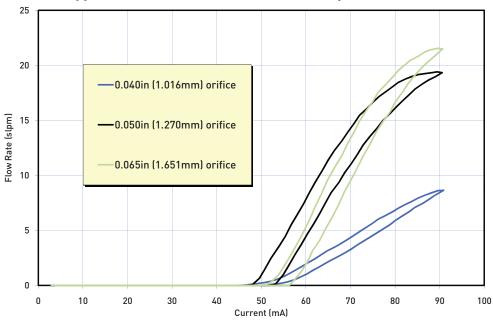
Pressure:

0 to 50 psi (3.45 bar) 0 to 75 psi (5.17 bar) 0 to 100 psi (6.89 bar) See Table 1

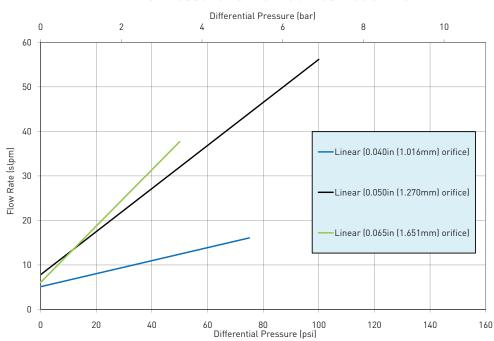
Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Sizes:


0.040 in (1.016 mm) 0.050 in (1.270 mm) 0.065 in (1.651 mm)

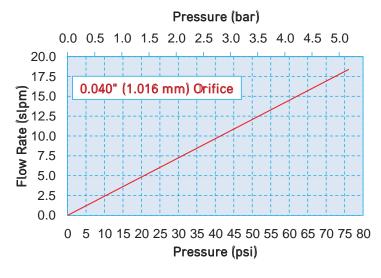
Hysteresis:

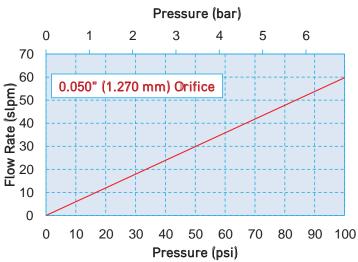

7% of full scale current (Typical) 15% of full scale current (Max)

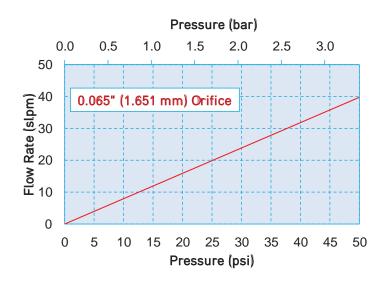
Typical Air Flow with 20 VDC Coil @ 25psid (1.7 bar)

MD PRO Pressure vs Flow Curves Model 4-6

Table 1: Pressure Capabilities


Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential	
0.040in (1.016mm)	150 psig (10.34 bar)	75 psid (5.17 bar)	
0.050in (1.270mm)	150 psig (10.34 bar)	100 psid (6.89 bar)	
0.065in (1.651mm)	150 psig (10.34 bar)	50 psid (3.45 bar)	


Table 2: Electrical Requirements


Minimum	Nominal Coil	
Available	Resistance @	Input Current for
Voltage (VDC)	20°C (Ohms)	Full Flow (mA)
5.5	11	304
8.0	23	212
11.5	47	152
13.5	68	125
20.0	136	91
29.0	274	66

MD PRO Sizing Charts

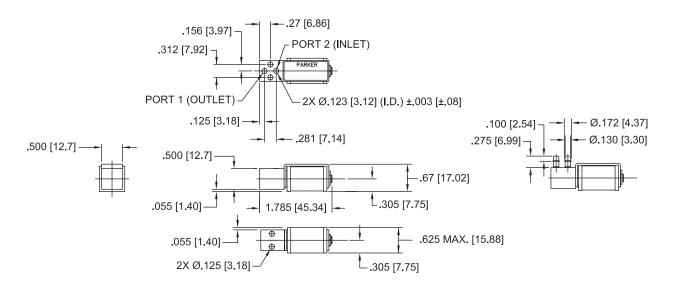
Pneumatic Interface

MD PRO Manifold Mount

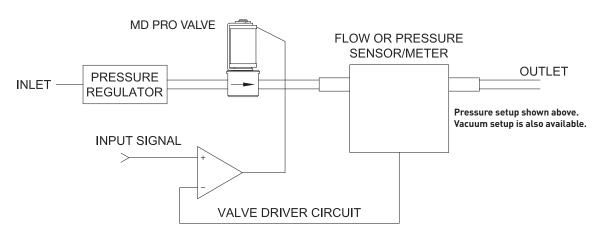
MD PRO Barbed

Electrical Interface

18" Wire Lead


4 PC Pin

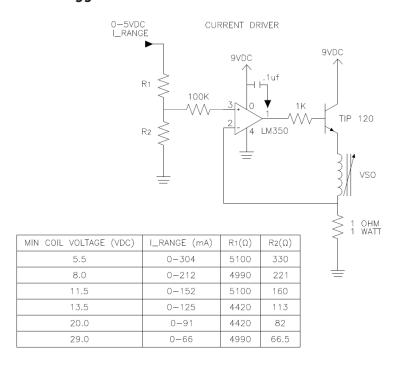
Quick Connect Spade


MD PRO Manifold Mount and Barbed Body Basic Valve Dimensions

MD PRO Installation and Use

Typical Valve Set-up

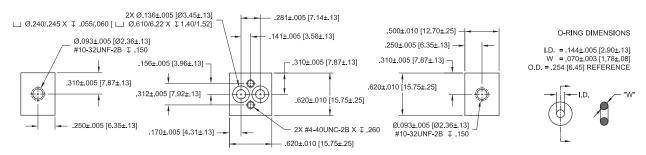
Valve Electrical Control


Basic Control:

The MD PRO valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.


Suggested MD PRO Current Driver Schematic

Manifold & O-Ring Dimensions & Design

Not shipped with valves.

Ordering Information

Sample Part ID	MDPRO	4	V	A	F	8	S
Description	Standard	Model Number	Elastomer/Body	Coil Selection*	Electrical Interface	Pneumatic Interface	Cleaning
		#: Max. Operating Pressure/Orifice Size	V : FKM/Brass	X: Max Voltage*	F: Wire Leads, 18"		S: Standard
				A: 5.5 VDC/11 Ohms/0.304 amsp	P: PC Board Mount 4 PC Pins	Screen*	Cleaning
Options		4 : 75 psid/0.040"		B : 8 VDC/23 Ohms/0.212 amps	Q : Quick Connect Spade	8: 1/8" Barbs	0: Oxygen Service
	1	5 : 100 psid/0.050"		C : 11.5 VDC/47 Ohms/0.152 amps			Association
		6 : 50 psid/0.065"		D : 13.5 VDC/68 Ohms/0.125 amps			Accessories
				E : 20 VDC/136 Ohms/0.091 amps			Manifold Mount O-Rings: 190-007024-002 (FKM)
ORDER ONLINE		1		F: 29 VDC/274 Ohms/0.066 amps		* /0 Missas Cassas	Recommended Mounting Hardware: Mounting Screw, 4-40 x 5/8' 191-000115-010
		* Max Operating Pressure/Orifice Size		* Max Voltage for continuous full flow, ambient temperature 55°C		* 40 Micron Screen (Port 3)	191-000115-010 Set Torque: 5.0 in-lb. (6.8 N-m)
							Recommended Tubing Internal Diameter: 0.125 in (3.0 mm)

In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media. Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range.

NOTE: Please consult Parker Precision Fluidics for other considerations. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002206-001 and Drawings #890-003022-001 and #890-003022-003.

For more information call +1 603 595 1500 or email ppfinfo@parker.com Visit www.parker.com/precisionfluidics

Maximum Flow Proportional Valve

Typical Applications:

- Acute & Sub-Acute Ventilators
- Portable Ventilators
- Anaesthesia
- Pressure & Flow Control
- Mass Flow Controllers

Performance Data Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, oxygen, hydrogen, heliox, carbon dioxide, argon, nitrogen & others

Operating Environment:

32 to 131°F (0 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.35 in (58 mm)

Width:

1.0 in (25 mm)

Height:

2.29 in (35 mm)

Porting:

Manifold Mount;

1/8 NPT Optional Manifold

Weight:

0.104 lbs (47 grams)

Filtration:

40 Micron (Customer Supplied)

Oxygen Service Clean:

Standard

The PACE Hf is a high flow proportional valve utilizing a Parker Advanced Technology actuator to deliver precise control, elevated flow, and minimal power consumption in a small package. The PACE Hf is the ideal solution for applications sensitive to repeatability, hysteresis, and response time, delivering 180 slpm of air at 30 psi while consuming less than 1 watt of power.

Features

- Wide controllable range and tight control under varying inlet pressures.
- High inlet pressure capable (100 psi).
- Inlet and outlet pressure balanced make it ideal for pressure control
- Low power consumption, low heat generation.
- Proven performance tested to 100 million cycles.
- Small size and light weight, highest flow capacity in class.
- RoHs compliant.

Electrical

Power Steady State:

Rapid Response - 0.45 Watts Digital Compensation - 0.6 Watts

Power:

Steady state 0.6 Watts (MAX) Cycling 15Hz 1.2 Watts

Supply Voltage:

12 VDC (-5% + 10%)

Control Voltage:

0 to 10 VDC

Wetted Materials

Body:

C36000 Brass

All Others:

FKM; 17-4 PH Stainless Steel

Two Versions Available

Rapid Response:

Ideal for applications requiring rapid response and repeatable hysteresis (23% typical) in closed loop applications.

Digital Compensation:

Ideal for applications requiring tightly controlled hysteresis (3% typical), or use in open loop applications.

Performance Characteristics

Internal Leak Rate:

< 5.0 sccm of air @ 100 psig (6.89 bar)

External Leak Rate:

< 1 sccm of air @ 100 psig (6.89 bar)

Pressure:

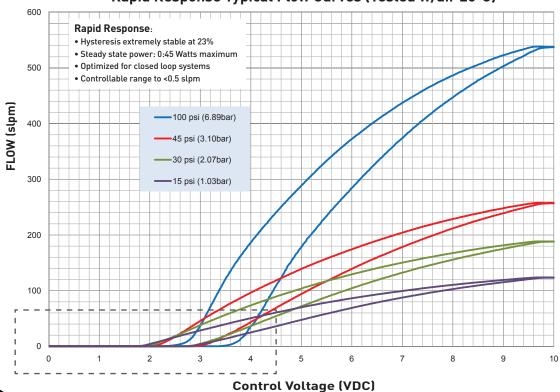
Operating -10 to 100 psig (6.89 bar) Proof 150 psig (10.34 bar)

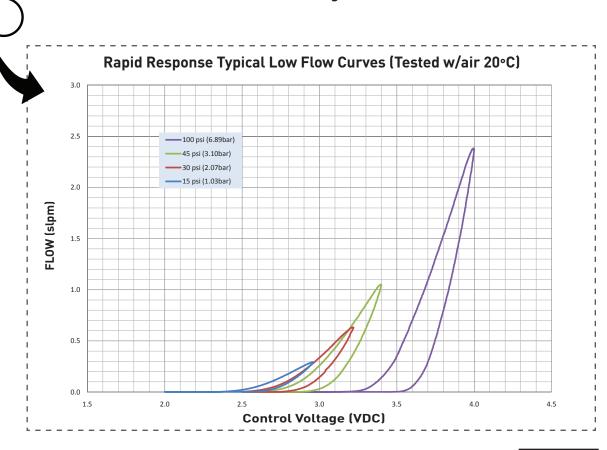
Orifice Size:

0.128" effective (3.35 mm)

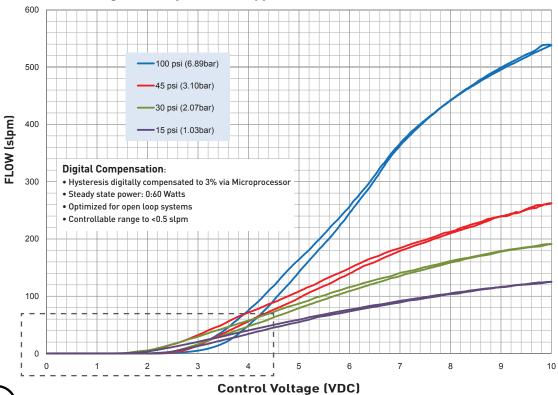
Hysteresis:

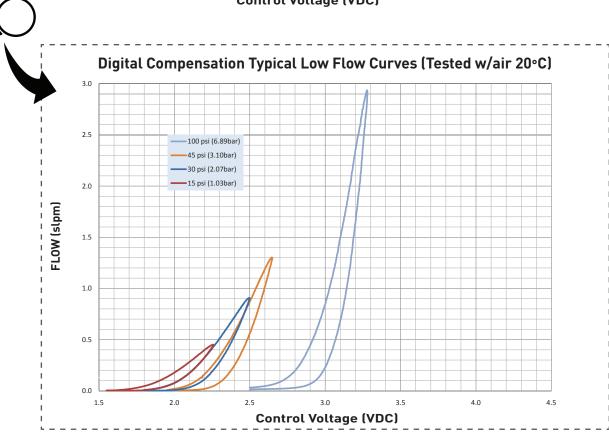
Rapid Response - 23%

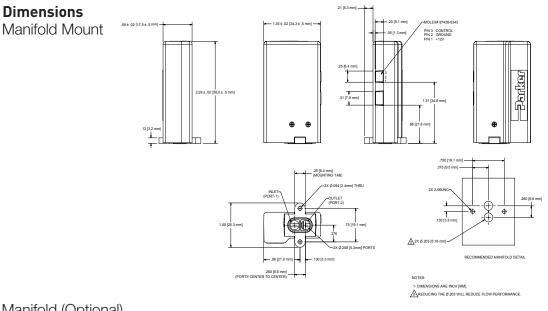

Digital Compensation - 3%

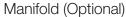

Response Time:

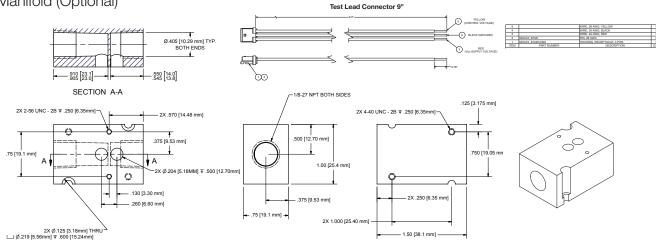
Rapid Response - 5 msec typical Digital Compensation -10 msec typical


Rapid Response Typical Flow Curves (Tested w/air 20°C)






Digital Compensation Typical Flow Curves (Tested w/air 20°C)



Ordering Information

Sample Part ID	941	1	1	1	2	1	1	001
Description	Series	Elastomer	Pneumatic Interface	Body	Control Method	Compensation	Calibration	
		1. FKM	1: Manifold Mount	1: Brass	2: 0 to 10 VDC	1: Rapid Response	1: 175 slpm @ 30 psi	
						2: Digital Compensation		Accessories
Options								Mounting Screw 191-000112-405 2-56 x 1/4 SHCS Manifold Gasket 890-001046-001 (FKM) Single Station Manifold 1/8 NPT, 890-001051-001 Test Lead Connector,9" 590-000095-001

NOTE: Please consult Parker Precision Fluidics for other considerations. For more detailed information, visit us on the Web, or call and refer to Performance Spec. Digital Compensation #790-002309-001, Rapid Response #790-002309-002 and Drawing #890-003248-001.

> For more information call +1 603 595 1500 or email ppfinfo@parker.com Visit www.parker.com/precisionfluidics

VSO®- MAX Miniature High Flow Proportional Valve

Non-Thermally Compensated Proportional Valve

Typical Applications:

- Ventilators
- 0, Concentrators/Conservers
- Anaesthesia Delivery & Monitors
- Pressure & Flow Control
- Mass Flow Control

The VSO®- MAX is a high flow proportional valve that provides maximum flow capabilities to 240 slpm while consuming less than two watts of power. By offering 18% more flow and using 25% less power than the nearest competitive valve on the market, VSO®- MAX becomes the ideal solution for applications requiring low hysteresis and fast response, such as ventilators with fresh breathing circuit gas delivery, as well as other medical, analytical, and pathogen detection devices. This valve can be used with inlet pressures of up to 60 psig (4 bar) and features three standard control voltage ranges, including 5, 12, and 24 VDC.

Features

- Capable of 240 slpm flow and pressures up to 60 psig (4 bar).
- Face seal manifold mount; manifold available with 1/8 NPT ports.
- Proven performance to minimum 25 million life cycles.
- Light weight (70 grams).
- Low power solution.
- RoHS compliant.

Performance Data Physical Properties

Valve Type:

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, &

Operating Environment:

41 to 131°F (5 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

2.02 in (51.3 mm)

Width:

0.625 in (16.51 mm)

Height:

0.68 in (17.01 mm)

Porting:

Manifold mount

Weight:

0.153 lbs. (70 gm)

Physical Properties

Filtration:

40 Micron (Customer Supplied)

Flow Direction:

Inlet Port Port 1 Outlet Port Port 2

Electrical

Power:

2.0 Watts maximum @ 20°C

Voltage:

See Table 2

Electrical Termination:

18 in Wire Leads

Wetted Materials

Body:

360 HO, Brass

Stem Base:

430 FR Stainless Steel and Brass 360 HT

All Others:

FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 5.0 SCCM of air with a differential pressure of 60 psi (4 bar)

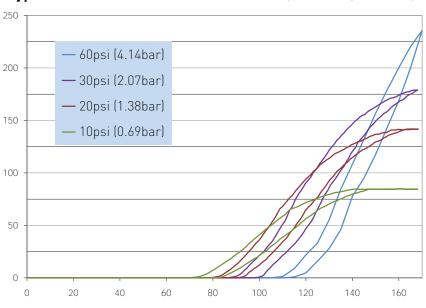
External 0.5 SCCM of air at 60 psi (4 bar)

Pressure:

Operating 5 - 60 psig (4.14 bar) Proof 160 psig (11 bar) See Table 1

Orifice Sizes:

0.116" effective (2.946 mm)


Hysteresis:

7% of full scale current (Typical) 15% of full scale current (Max)

VSO®- MAX Non-Thermally Compensated Proportional Valve

Typical Air Flow with 12VDC 68 Ohm coil (Tested w/air 20°C)

VSO® – MAX Pressure vs Flow

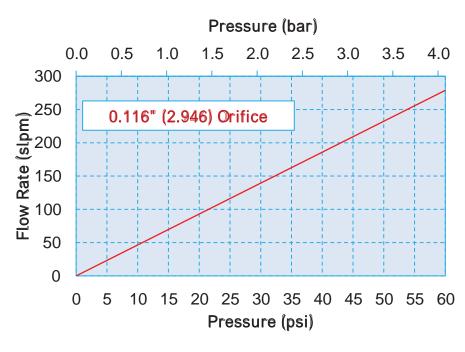


Table 1: Pressure and Flow Capabilities

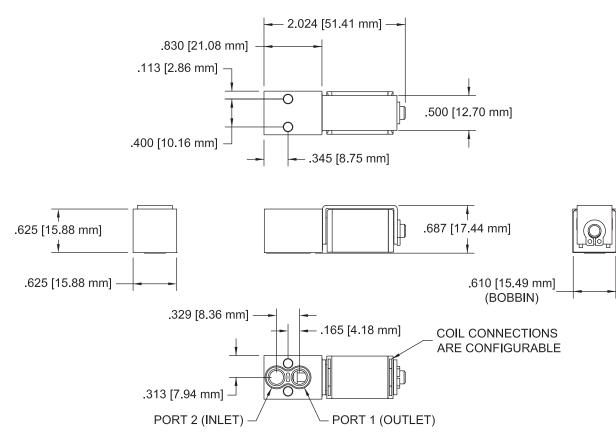
Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential		
0.116in (2.95mm)	60 psig (4.14 bar)	60 psid (4.14 bar)		

Table 2: Electrical Requirements

	Nominal Coil	
Minimum Available	Resistance @	Input Current for
Voltage (VDC)	20°C (Ohms)	Full Flow (mA)
5	11.9	423
12	68.4	170
24	273.6	85

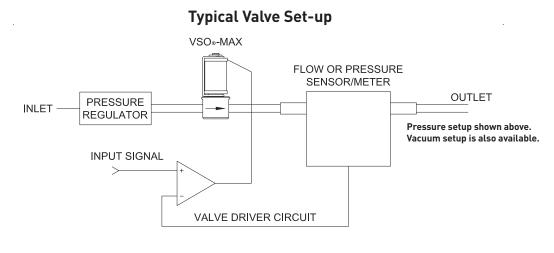
Pneumatic Interface

Electrical Interface


VSO®- MAX Manifold Mount

18" Wire Lead

VSO® - MAX Manifold Body Basic Valve Dimensions

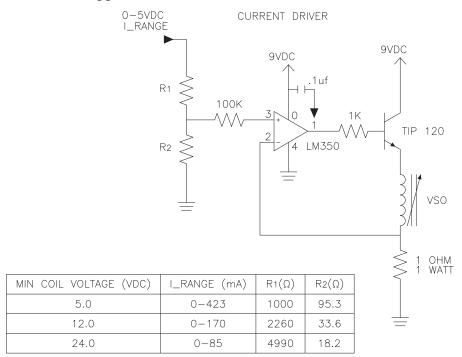

NOTES:

- 1- ALL DIMENSIONS ARE REFERENCE.
- 2- DIMENSIONS ARE INCH[MM].

VSO®- MAX Non-Thermally Compensated Proportional Valve

VSO® - MAX Installation and Use

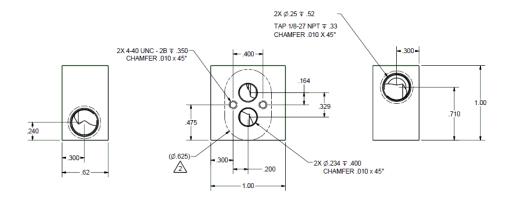
Valve Electrical Control


Basic Control:

The VSO®- MAX valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.


Suggested VS0®- MAX Current Driver Schematic

VSO®- MAX Non-Thermally Compensated Proportional Valve

Manifold Dimensions & Design

Ordering Information

Sample Part ID	921	1	1	1	05	1	000	
Description	Series	Elastomer	Pneumatic Interface	Body	Voltage	Electrical Interface		Accessories
Options		1. FKM	1: Manifold Mount	1: Brass	05: 5 VDC 12: 12 VDC 24: 24 VDC	1: Wire Leads, 18"		Mounting Screw SHCS, 4-40 X 7/8, SS 191-000214-002 Spare Manifold Gasket, Body, VSO MAX 190-007057-001 (FKM) Single Station Manifold 1/8 NPT 890-009034-001

In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range.

NOTE: Please consult Parker Precision Fluidics for other considerations. For more detailed information, visit us on the Web, or call and refer to Performance Spec. #790-002288-001 and Drawing #890-003230-001.

For more information call +1 603 595 1500 or email ppfinfo@parker.com

HF PRO High Flow Proportional Valve

Non-Thermally Compensated Proportional Valve

The HF PRO controls the flow of gas proportionally to input current. The valve may be driven with DC current or Pulse Width Modulation. HF PRO achieves optimal system performance when it uses closed loop feedback.

Features

- Capable of 60 lpm flow and pressures up to 50 psig.
- Face seal manifold mount or 5mm barbed body options.
- Proven performance to minimum 35 million life cycles.
- Non-thermally compensated proportional valve.
- RoHS compliant.

Patient Monitors Pressure & Flow Control

Typical Applications:

0, Concentrators/Conservers

Performance Data Physical Properties

Valve Type:

Ventilators

Anaesthesia

2-Way Normally Closed

Media:

Air, argon, helium, hydrogen, methane, nitrogen, oxygen, & others

Operating Environment:

32 to 131°F (0 to 55°C)

Storage Temperature:

-40 to 158°F (-40 to 70°C)

Length:

1.785 in (45.34 mm)

Width:

0.625 in (16.51 mm)

Height:

0.67 in (17.02 mm)

Porting:

1/8" Barbs, Manifold Mount

Weight:

2.2 oz (62.86 grams)

Physical Properties

Internal Volume:

0.031 in³ (0.508 cm³)

Filtration:

43 micron

Flow Direction:

Inlet Port Port 2
Outlet Port Port 1

Oxygen and Analytically Clean:

Standard

Electrical

Power:

3.0 Watts maximum

Voltage:

See Table 2

Electrical Termination:

18 in Wire Leads

Wetted Materials

Body: 360 HO2 Brass

Stem Base:

430 FR Stainless Steel and Brass 360 HT

All Others:

FKM; 430 FR Stainless Steel; 300 Series Stainless Steel

Performance Characteristics

Leak Rate:

The leakage shall not exceed the following values:

Internal 0.5 SCCM of N₂ External 0.016 SCCM of N₂

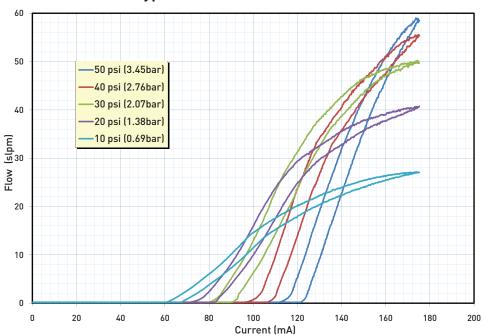
Pressure:

0 to 50 psi (3.45 bar) See Table 1

Vacuum:

0-27 in Hg (0-686 mm Hg)

Orifice Size:


0.070" (1.8 mm)

Hysteresis:

7% of full scale current (Typical) 15% of full scale current (Max)

Typical Air Flow with 20 VDC Coil

HF PRO Pressure vs Flow Curve

Pressure (bar)

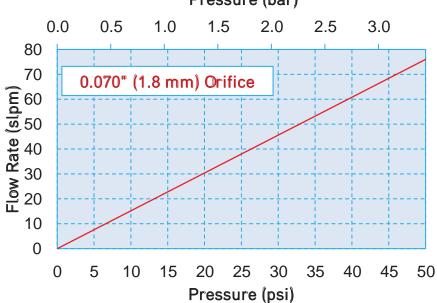


Table 1: Pressure and Flow Capabilities

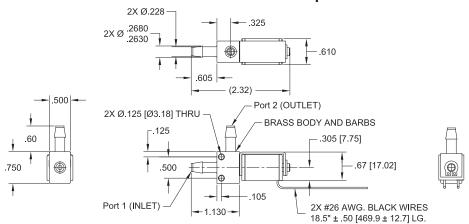
Orifice Diameter	Maximum Operating Inlet Pressure	Maximum Operating Pressure Differential	
0.070in (1.8 mm)	150 psig (10.34 bar)	50 psid (3.45 bar)	

Table 2: Electrical Requirements

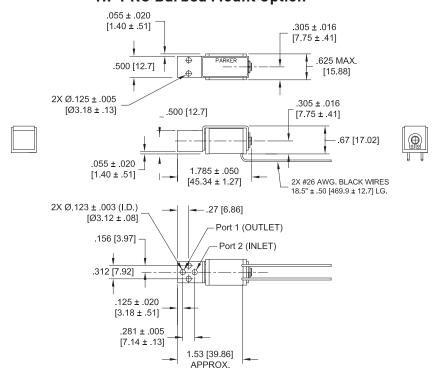
	Nominal Coil			
Minimum Available	Resistance @	Input Current for		
Voltage (VDC)	20°C (Ohms)	Full Flow (mA)		
5	11.9	435		
12	68	175		
24	274	87		

Pneumatic Interface

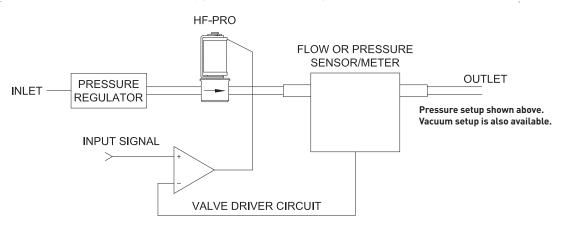
HF PRO Manifold Mount



Electrical Interface HF PRO 18" Wire Lead



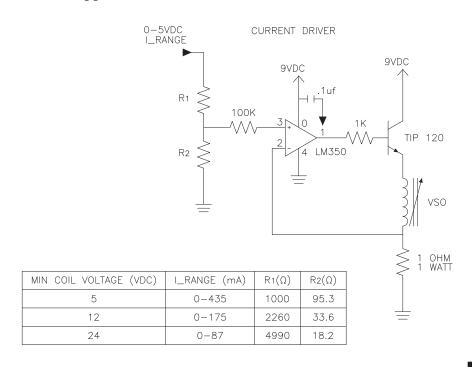
HF PRO Manifold Mount Option


HF PRO Barbed Mount Option

HF PRO Installation and Use

Typical Valve Set-up

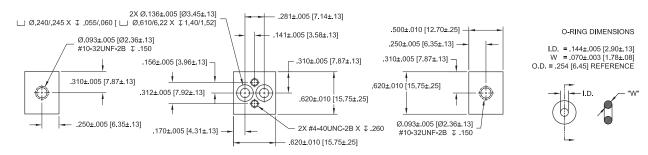
Valve Electrical Control


Basic Control:

The HF PRO valve can be controlled by either voltage or current; however, it is highly recommended that current control be employed to ensure the most repeatable valve flow performance.

PWM Control:

For PWM control, the signal applied to the valve should have a frequency between 5-12kHz. Optimum frequency will be application dependent.


Suggested HF PRO Current Driver Schematic

Manifold & O-Ring Dimensions & Design

Not shipped with valves.

Ordering Information

Sample Part ID	HFPRO	7	V	A	F	8	0
Description	Series	Model Number	Elastomer/Body	Coil Selection	Electrical Interface	Pneumatic Interface	Cleaning
		#: Max. Operating Pressure/Orifice Size	V: FKM/Brass	X: Max Voltage*	F: Wire Leads, 18"	1: Manifold Mount	0: Oxygen Service
		7 : 50 psid/0.070"		A: 5 VDC		8: Barbed Body	
Options				D: 12 VDC			
				F: 24 VDC			Accessories
ORDER ONLINE				* Max Voltage for continuous full flow, ambient temperature 55°C			Manifold Mount O-Rings: 190-007024-002 (FKM)
				·			Recommended Mounting Hardware: Mounting Screw, 4-40 x 5/8" 191-000115-010 Set Torque: 5.0 in-lb. [6.8 N-m]
							Recommended Tubing Internal Diameter: 0.125 in (3.0 mm)

In order to provide the best possible solution for your application, please provide the following requirements when contacting Applications Engineering:

- Media, Inlet & Outlet Pressures
- Minimum Required Flow Rate
- System Supply Voltage
- Media & Ambient Temperature Range.

NOTE: Please consult Parker Precision Fluidics for other considerations.

For more detailed information, visit us on the Web, or call and refer to
Performance Spec. #790-002243-001 and HF PRO Barbed Drawing #890-003192-001
and HF PRO Manifold Mount Drawing #890-003191-001.

For more information call +1 603 595 1500 or email ppfinfo@parker.com
Visit www.parker.com/precisionfluidics

Value Added Application-Specific Solutions

Gassing Control System

 Mixed gassing logic design includes VSO® proportional valves.
 X-Valve®, pressure switch, pressure sensors, and PCB interface

Pneumatic Module

- · Integrated valve manifold
- Compact design
- Single electrical connection
- Valves configured per specifications

Vacuum Gas Control Module

- Tested to 1 x 10⁷ cc/sec/atm Helium
- Assembly tested on mass spectrometer

6 Position VSO® Proportional Pneumatic Manifold Assembly

- Quick connect fittings
- Circuit board with mass electrical termination

Magnum Manifold Assembly

- Integrated circuit board with single connection
- Compact design
- Easily adaptable
- 2 way and 3 way designs

8 Position SRS Model Pneumatic Manifold

- Integrated pressure/ vacuum sensors
- Mixed pneumatic logic design
- Ultem[®] manifold pressure/vacuum sensors

10 Position X-Valve® Pneumatic Manifold

- Mixed pneumatic logic design
- Ultra-miniature design with PCB for mass termination

10 Position SRS Model Pneumatic Manifold

- Integrated pressure/ vacuum sensors
- Mixed pneumatic logic design
- Ultem® manifold pressure/vacuum sensors

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY, AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

—Parker

© 2011 Parker Hannifin Corporation

Parker Hannifin Corporation

Precision Fluidics Division

26 Clinton Dr., Unit 103

Hollis, NH 03049

phone 603 595 1500

fax 603 595 8080

www.parker.com/precisionfluidics

PPF-MPV-002/US September 2011